Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Gompf showed that for $$K$$ in a certain family of double-twist knots, the swallow-follow operation makes $1/n$-surgery on $$K \# -K$$ into a cork boundary. We derive a general Floer-theoretic condition on $$K$$ under which this is the case. Our formalism allows us to produce many further examples of corks, partially answering a question of Gompf. Unlike Gompf’s method, our proof does not rely on any closed 4-manifold invariants or effective embeddings, and also generalizes to other diffeomorphisms.more » « less
-
Abstract We show that a large class of satellite operators are rank‐expanding; that is, they map some rank‐one subgroup of the concordance group onto an infinite linearly independent set. Our work constitutes the first systematic study of this property in the literature and partially affirms a conjecture of the second author and Pinzón‐Caicedo. More generally, we establish a Floer‐theoretic condition for a family of companion knots to have infinite‐rank image under satellites from this class. The methods we use are amenable to patterns that act trivially in topological concordance and are capable of handling a surprisingly wide variety of companions. For instance, we give an infinite linearly independent family of Whitehead doubles whose companion knots all have negative ‐invariant. Our results also recover and extend several theorems in this area established using instanton Floer homology.more » « less
-
Abstract We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly nonequivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route toward establishing the noncommutativity of the equivariant concordance group.more » « less
An official website of the United States government
